Pembahasansoal dalam Struktur Aljabar berkaitan dengan relasi ekuivalen. Gunakan daftar isi untuk mempermudah menyortir soal dan pembahasan. Diberikan relasi R pada himpunan A, ada tiga syarat yang harus dipenuhi relasi R agar dapat disimpulkan bahwa R adalah relasi ekuivalen. Ketiga syarat tersebut adalah: a) Reflektif, jika dan hanya jika, . Diantara empat pasangan himpunan di bawah ini yang merupakan pasangan himpunan yang ekuivalen adalah . himpunan faktor dari 4 dan himpunan bilangan prima kurang dari 6 dan Apayang dimaksud dengan himpunan himpunan adalah a. Kumpulan benda atau objek yang anggotanya dapat didefinisikan dengan jelas sehingga tidak menimbulkan multitafsir. Nah sekarang kita lihat nih dari semua opsi mana yang termasuk himpunan dan mana yang bukan dari opsi? A. Omcia ini kumpulan kendaraan roda dua Nah batasannya adalah kendaraan Himpunandisebut ekuivalen jika jumlah anggota kedua himpunan sama. Jadi, di antara pilihan jawaban, pasangan himpunan yang memiliki jumlah anggota sama adalah pasangan pada pilihan (A), yaitu dengan 5 anggota. . Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya - Here's Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya collected from all over the world, in one place. The data about Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya turns out to be....pengertian dan contoh himpunan ekuivalen lengkap dengan contoh soalnya , riset, pengertian, dan, contoh, himpunan, ekuivalen, lengkap, dengan, contoh, soalnya, LIST OF CONTENT Opening Something Relevant Conclusion Recommended Posts of Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya Conclusion From Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya - A collection of text Pengertian Dan Contoh Himpunan Ekuivalen Lengkap Dengan Contoh Soalnya from the internet giant network on planet earth, can be seen here. We hope you find what you are looking for. Hopefully can help. Thanks. See the Next Post MatematikaALJABAR Kelas 7 SMPHIMPUNANOperasi HimpunanDiketahui himpunan-himpunan berikut. A = {buku, pensil, bolpen} B = {mobil, truk} C = {x l x < 40, x bilangan asli kelipatan 10} D = {x x faktor prima dari 36} E= {0} F = {} Pasangan himpunan yang ekuivalen adalah...Operasi HimpunanHIMPUNANALJABARMatematikaRekomendasi video solusi lainnya0115Diketahui S = {1, 2, 3, 10} dan A = {x faktor dari 12, x...0041Diketahui A={2,3,4} dan B={1,3}, maka A⋃B adalah ... a...0230Diketahui P={bilangan asli kurang dari 5}, Q={bilangan c...Teks videodi sini ada pertanyaan tentang himpunan diketahui himpunan-himpunan Berikut yang merupakan himpunan ekuivalen adalah 2 himpunan dikatakan ekuivalen jika jumlah anggota dua himpunan 2 himpunan adalah Sama ya, gimana kita bisa? Tuliskan menjadi himpunan. Hah, ya itu kita samakan dengan himpunan b. Ya. Nah ini adalah contohnya saja. Nah berarti dalam hal dalam pertanyaan ini himpunan a. Berarti set tulis ya anggota himpunan a itu ada 3 ya, lalu kemudian di himpunan b yang anggotanya ada dua Nah kemudian Bagaimana dengan Aceh yang c tentunya kita harus tuliskan dulu anggotanya yaitu ada bilangan asli kelipatan 10 dari yang kurang dari 40 10 20 30 berarti 30 nya saya tulis ulang ya 30 nah Berarti disini Himpunan c. Nya saya bisa tulis jumlah anggotanya ada 3 kemudian yang himpunan D faktor prima dari 3 Ya berarti di sini saya bikin 36 ya pohon faktor yaitu dibagi dua 18 dibagi 29 ya kemudian dibagi dengan 3 ya. Sehingga disini kita bisa Tuliskan faktor prima dari 36 yaitu 2 dan 3 berarti disini jumlah anggota himpunan d nya ada 2 lalu kemudian yang himpunan e nya jumlah anggotanya ada 1 kemudian yang himpunan f nya berapa himpunan kosong berarti tidak ada ya berarti di sini Jika kita memasangkan himpunan ekuivalen ada himpunan a dengan C lalu yang kedua himpunan b dengan himpunan D maka ini adalah jawaban Akhirnya sampai jumpa di pertanyaan berikutnya Berikut ini adalah pembahasan tentang himpunan ekuivalen dan contoh himpunan ekuivalen dilengkapi dengan penjelasannya. Pengertian Himpunan Ekuivalen Contoh Soal Himpunan EkuivalenSebarkan iniPosting terkait Perhatikan uraian berikut. Di dalam sebuah kulkas lemari es terdapat 3 jenis minuman, yaitu susu, teh, dan sirup dan tiga jenis buah-buahan, yaitu,mengga, jeruk, dan apel. Sekarang kita misalkan jenis-jenis minuman adalah himpunan A dan jenis-jenis buah-buahan himpunan B, maka dapat ditulis A = {susu, teh, sirup} B = mangga, jeruk, apel} Kalau kamu perhatikan kedua himpunan tersebut, apakah ada yang sama di antara keduanya? Dari kedua himpunan tersebut yang sama adalah banyak anggotanya, yaitu sama-sama tiga, dapat ditulis nA = 3 dan nB = 3, jadi nA = nB = 3. Himpunan-himpunan yang banyak anggotanya sama disebut himpunan ekuivalen atau himpunan ekuipoten. Himpunan ekuivalen adalah himpunan yang unsurnya tidak sama, tapi banyak anggotanya sama. Himpunan ekuivalen adalah dua himpunan yang memiliki jumlah anggota sama. Gambar Himpunan x ekuivalen dengan himpunan y Contoh Soal Himpunan Ekuivalen Diketahui himpunan A = {1, 2, 3}, B = a, b, c}, dan E = {1, Β½ , 1/3 , ΒΌ } Di antara tiga himpunan ini mana yang ekuivalen? Jawab nA = 3, nB = 3, dan nC = 4 Jadi nA = nB = 3, maka himpunan A ekuivalen B Dari uraian di atas dapat disimpulkan bahwa Himpunan A dan B dikatakan himpunan ekuivalen, jika anggota himpunan A dan himpunan B sama banyak. Dua himpunan A dan B dikatkan ekivalen atau sederajad, jika banyaknya anggota elemen himpunan A sama dengan banyaknya anggota elemen himpunan B. Demikian pembahasan tentang himpunan ekuivalen dan contoh himpunan ekuivalen dilengkapi dengan penjelasannya. Baca juga Contoh Soal Himpunan Kosong A. Himpunan Kosong. Himpunan kosong adalah himpunan yang tidak mempunyai anggota. Himpunan kosong ditulis dengan notasi {$\$} atau $\varnothing$ Contoh 1. Himpunan bilangan prima antara 7 dan 11. 2. P = {xx < 1, x $\in$ bilangan asli} B. Himpunan Semesta. Himpunan semesta adalah himpunan yang memuat semua objek yang dibicarakan, sehingga himpunan semesta disebut juga semesta pembicaraan. Contoh 1. A = {2, 3, 5, 7, 11} himpunan semesta dari A bisa berupa i. S = bilangan prima, ii. S = bilangan asli, iii. S = bilangan cacah, dan lain-lain. 2. P = {kambing, sapi, kerbau} Himpunan semesta dari P bisa berupa i. S = {hewan berkaki empat} ii. S = {hewan menyusui} iii. S = {hewan pemakan rumput} dan lain-lain. Himpunan semesta dilambangkan dengan $S$. Himpunan semesta digambarkan berupa persegi panjang pada diagram venn. C. Himpunan Tak Berhingga. Himpunan tak berhingga adalah himpunan yang anggotanya tidak terbatas banyaknya, sehingga banyak anggotanya tidak dapat dihitung. Contoh 1. Q = {bilangan asli lebih dari 5} 2. K = {1, 3, 5, 7, . . .} D. Himpunan Berhingga. Himpunan berhingga adalah himpunan yang banyak anggotanya terbatas. Contoh 1. A = {bilangan prima kurang dari 15} 2. P = {6, 7, 9} E. Himpunan Bagian. Himpunan P merupakan himpunan bagian dari Q jika setiap anggota P adalah anggota Q. P himpunan bagian dari Q dituliskan dengan notasi $P \subset Q$. contoh 1. P = {3, 7, 11}, Q = {1, 3, 5, 7, 9, 11, 13} Karena setiap anggota P adalah anggota Q, dengan kata lain semua anggota P termuat di dalam Q, maka himpunan P adalah himpunan bagian dari himpunan Q, ditulis $P \subset Q$ 2. A = {3, 4, 5, 6, 7, 8, 9}, B = {2, 4, 6} Tidak semua anggota B merupakan anggota himpunan A, sehingga himpunan B bukanlah himpunan bagian dari himpunan A. Setiap himpunan kosong $\varnothing$ selalu menjadi himpunan bagian dari suatu himpunan. Jika banyak anggota himpunan A adalah n, maka banyak himpunan bagian dari A adalah $\boxed{2^n}$. Banyaknya himpunan bagian dari A yang banyak anggotanya m adalah $\boxed{C_{m}^{n} = \dfrac{n!}{n-m!.m!}}$ $n! = n.n - 1.n - 2.n - 3..... Contoh soal 1. Jika A = {5, 9, 11}, maka banyak himpunan bagian dari A adalah . . . . Pembahasan Banyak anggota dari himpunan A adalah 3. Berarti n = 3. Himpunan bagian dari A adalah { } β†’ beranggotakan nol anggota himpunan kosong {5}, {9}, {11} β†’ beranggotakan satu anggota. {5, 9}, {5, 11}, {9, 11} β†’ beranggotakan dua anggota. {5, 9, 11} β†’ beranggotakan tiga anggota. Banyaknya himpunan bagian dari A adalah 8. Banyaknya himpunan bagian dengan nol anggota = 1. Banyaknya himpunan bagian dengan satu anggota = 3. Banyaknya himpunan bagian dengan dua anggota = 3. Banyaknya himpunan bagian dengan tiga anggota = 1. Contoh soal 2. Jika P = {a, b, c, d, e, f}, tentukanlah banyak himpunan bagian dari P dan banyaknya himpunan bagian dari P dengan3 anggota. Pembahasan Banyaknya anggota dari himpunan P adalah 6, jadi n = 6. $\bullet$ Banyaknya himpunan bagian $= 2^n$ $= 2^6$ $= 64$. $\bullet$ Banyaknya himpunan bagian dengan 3 anggota $= C_{m}^{n} = \dfrac{n!}{n-m!.m!}$ $= \dfrac{6!}{6-3!.3!}$ $= \dfrac{6!}{3!.3!}$ $= \dfrac{ $= 20$Hubungan Antar HimpunanA. Himpunan Ekuivalen. Dua himpunan dikatakan ekuivalen jika kedua himpunan tersebut memiliki banyak anggota yang sama. Contoh A = {1, 2, 3, 4} β†’ nA = 4. B = {a, b, c, d} β†’ nB = 4 nA = nB sehingga himpunan A ekuivalen dengan himpunan B, dinotasikan dengan $A \sim B$. B. Himpunan Sama. Dua himpunan dikatakan sama jika kedua himpunan mempunyai anggota yang tepat sama. Contoh A = {1, 2, 3, 4} B = {1, 2, 3, 4} Karena anggota himpunan A tepat sama dengan anggota himpunan B, maka himpunan A sama dengan himpunan B, dinotasikan dengan A = B. C. Himpunan Saling Lepas. Dua himpunan dikatakan saling lepas jika kedua himpunan tidak memiliki anggota persekutuan. Contoh P = {2, 3, 4} Q = {6, 7, 8, 9} Himpunan P dan Himpunan Q tidak memiliki anggota yang sama atau anggota persekutuan, sehingga himpunan P dan himpunan Q adalah saling lepas. D. Himpunan Tidak Saling Lepas. Dua himpunan dikatakan tidak saling lepas jika kedua himpunan memiliki anggota persekutuan, tetapi tidak menjadi himpunan bagian. Contoh K = {3, 4, 5, 6} L = {1, 2, 3, 4, 7, 9} Himpunan K dan himpunan L memiliki anggota persekutuan yaitu {3, 4}, tetapi K bukanlah himpunan bagian dari L dan L bukan himpunan bagian dari Operasi HimpunanA. Irisan Himpunan. Irisan himpunan A dan himpunan B adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan A sekaligus anggota himpunan B, atau Himpunan yang anggota-anggotanya merupakan anggota persekutuan dari himpunan A dan himpunan B. $A \cap B = \{xx \in A \; dan \; x \in B\}$ Contoh P = {2, 3, 4, 5, 6} Q = {5, 6, 7, 8, 9, 10} $P \cap Q = \{5, 6\}$ Note $Jika\ P \subset Q \;maka\; P \cap Q = P$ $Jika\ P = Q \;maka\; P \cap Q = P\; atau\; P \cap Q = Q$ B. Gabungan Himpunan. Gabungan himpunan A dan B adalah himpunan yang anggota-anggotanya adalah anggota himpunan A atau anggota himpunan B. $A \cup B = \{xx\in A \; atau \; x\in B\}$ Contoh A = {2, 5, 7, 9} B = {3, 4, 5, 7, 11, 12} $A \cup B = \{2, 3, 4, 5, 7, 9, 11, 12\}$ Banyak anggota dari gabungan dua himpunan $nA \cup B = nA + nB - nA \cap B$ C. Selisih Himpunan. Selisih himpunan $A\ dan\ B$ atau $A - B$ adalah himpunan semua anggota A yang tidak menjadi anggota B. $A - B = \{xx \in A \; dan\; x \notin B\}$ Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A - B = \{2, 6\}$ D. Jumlah Himpunan. Jumlah himpunan A dan himpunan B adalah himpunan yang anggotanya merupakan gabungan dari himpunan A dan himpunan B, tetapi bukan irisan A dan B. Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A + B = \{1, 2, 6, 9, 11\}$ E. Komplemen Himpunan. Komplemen Himpunan A adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan $S$ yang bukan A. Komplemen dari himpunan A dinotasikan dengan $A'$ atau $A^c$. $A'\ atau\ A^c = \{xx \notin A \;dan\; x \in S\}$Sifat-sifat Operasi HimpunanA. Sifat Komutatif. $\bullet$ $A \cap B = B \cap A$ $\bullet$ $A \cup B = B \cup A$ B. Sifat Assosiatif. $\bullet$ $A \cap B \cap C = A \cap B \cap C$ $\bullet$ $A \cup B \cup C = A \cup B \cup C$ C. Sifat Distributif. $\bullet$ $A \cap B \cup C = A \cap B \cup A \cap C$ $\bullet$ $A \cup B \cap C = A \cup B \cap A \cup C$ D. Dalil De' Morgan. $\bullet$ $A \cap B^c = A^c \cup B^c$ $\bullet$ $A \cup B^c = A^c \cap B^c$Contoh Soal dan Pembahasan Operasi Himpunan1. Di antara kumpulan-kumpulan berikut, yang merupakan himpunan adalah. . . . A. Kumpulan anak-anak yang rajin B. Kumpulan hewan yang bertubuh besar C. Kumpulan guru-guru yang sabar D. Kumpulan hewan berbulu. Kumpulan yang merupakan himpunan adalah kumpulan hewan berbulu, karena definisinya jelas dan bisa didata anggota himpunannya. Rajin, besar, dan sabar sifatnya relatif dan tidak jelas kategorinya. jawab D. 2. Himpunan bilangan prima ganjil yang kurang dari 15 adalah . . . . A. {2, 3, 5 , 7, 11, 13} B. {3, 5, 7, 9, 11, 13} C. {3, 5, 7, 9, 11, 13, 15} D. {3, 5, 7, 11, 13} Bilangan prima ganjil yang kurang dari 15 adalah {3, 5, 7, 11, 13} β†’ D. 3. {4, 5, 6, 7} jika dinyatakan dengan kata-kata adalah . . . . A. Himpunan bilangan asli antara 4 dan 7 B. Himpunan bilangan asli antara 3 dan 8 C. Himpunan bilangan asli dari 3 sampai 8 D. Himpunan bilangan asli dari 4 sampai 8 Himpunan bilangan asli antara 4 dan 7 adalah {5, 6}. Himpunan bilangan asli antara 3 dan 8 adalah {4, 5, 6, 7}. Himpunan bilangan asli dari 3 sampai 8 adalah {3, 4, 5, 6, 7, 8}. Himpunan bilangan asli dari 4 sampai 8 adalah {4, 5, 6, 7, 8}. Jawab B. 4. {3, 5, 7, 9, 11} jika dinyatakan dengan notasi pembentuk himpunan adalah . . . . A. {xx bilangan bulat} B. {xx bilangan asli} C. {x3 ≀ x ≀ 11, x $\in$ bilangan bulat} D. {x3 ≀ x ≀ 11, x $\in$ bilangan ganjil} {3, 5, 7, 9, 11} adalah bilangan ganjil dari 3 sampai 11. Jika dituliskan dengan notasi pembentuk himpunan menjadi {x3 ≀ x ≀ 11, x $\in$ bilangan ganjil} β†’ D. 5. Diketahui A = {y2 < y ≀ 6, y $\in$ bilangan cacah}. Jika dinyatakan dengan mendaftar anggota-anggota dari A adalah . . . . A. {2, 3, 4, 5, 6} B. {3, 4, 5} C. {3, 4, 5, 6} D. {2, 3, 4, 5} 2 $\notin$ A, tetapi 6 adalah anggota A, sehingga anggota A adalah {3, 4, 5, 6} β†’ C. 6. Diketahui P = {xx < 8, x $\in$ bilangan asli}, maka banyak anggota himpunan P atan nP adalah . . . . A. 7 B. 8 C. 9 D. 10 P = {1, 2, 3, 4, 5, 6, 7}, banyak anggotanya adalah 7. Jadi nP = 7 β†’ A. 7. Di antara himpunan-himpunan berikut, yang merupakan himpunan kosong adalah . . . . A. {bilangan prima antara 7 dan 11} B. {bilangan genap habis dibagi 3} C. {bilangan kelipatan 2 dan 5} D. {bilangan cacah kurang dari 2} Tidak ada bilangan prima antara 7 dan 11. Jadi bilangan prima antara 7 dan 11 adalah himpunan kosong. β†’ A. 8. Diketahui A = {4, 6, 8}, B = {1, 2, 3, 4, 6}, C = {0, 2, 4, 6, 8, 10}. Pernyataan yang benar adalah . . . . $A.\; A \subset B$ $B.\; A \subset C$ $C.\; B \subset C$ $D.\; C \subset B$ Setiap anggota A adalah anggota C, maka $A \subset C$ β†’ B. 9. Diketahui P = {a, b, c, d, e, f, g}, banyak himpunan bagian dari P yang mempunyai tiga anggota adalah . . . . A. 10 B. 15 C. 30 D. 35 $n = 7, m = 3$ $C_{3}^{7} = \dfrac{7!}{7 - 3!.3!}$ $= \dfrac{7!}{4!.3!}$ $= \dfrac{ $= 35$ Jadi banyak himpunan bagian dari P yang mempunyai tiga anggota adalah 35 buah. β†’ D. 10. Diketahui A = {x2 ≀ x < 6} dan B = {x4 ≀ x ≀ 8}. Maka $A \cap B$ adalah . . . . A. {3, 4} B. {3, 4, 5} C. {4, 5} D. {4, 5, 6} A = {2, 3, 4, 5} B = {4, 5, 6, 7, 8} $A \cap B = \{4, 5\}$ β†’ C. 11. Diketahui P = {faktor dari 18} dan Q = {faktor dari 12}. Maka $P \cup Q$ adalah . . . . A. {1, 2, 3, 4, 6, 12} B. {1, 2, 3, 4, 9, 12, 18} C. {1, 2, 3, 4, 6, 9, 12, 18} D. {1, 2, 3, 4, 5, 6, 7, 9, 12, 18} Faktor dari 18 1 x 18 2 x 9 3 x 6 Faktor dari 18 adalah {1, 2, 3, 6, 9, 18} P = {1, 2, 3, 6, 9, 18} Faktor dari 12 1 x 12 2 x 6 3 x 4 Faktor dari 12 adalah {1, 2, 3, 4, 6, 12} Q = {1, 2, 3, 4, 6, 12} $P \cup Q$ = {1, 2, 3, 4, 6, 9, 12, 18} β†’ C. 12. Diketahui $nA = 20$, $nB = 23$, dan $nA \cap B = 15$, maka n$A \cup B$ = . . . . A. 27 B. 28 C. 30 D. 32 $nA \cup B = nA + nB - nA \cap B$ $nA \cup B = 20 + 23 - 15$ $nA \cup B = 28$ β†’ B. 13. Diketahui himpunan K = {1 < x ≀ 11, x bilangan ganjil}. Banyaknya himpunan bagian dari himpunan K yang mempunyai 3 anggota adalah . . . . A. 4 B. 10 C. 20 D. 35 [Soal UN 2018] K = {3, 5, 7, 9, 11} n = 5, m = 3 $C_{3}^{5} = \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{2!.3!}$ $= \dfrac{ $= 10$ β†’ B. 14. Diketahui himpunan semesta S adalah himpunan bilangan cacah yang kurang dari 20. A adalah himpunan bilangan prima antara 3 dan 20. B adalah himpunan bilangan asli antara 2 dan 15. Komplemen dari $A \cap B$ adalah . . . . A. {0, 1, 2, 5, 7, 11, 13, 15, 16, 18} B. {3, 4, 6, 8, 9, 10, 12, 14, 17, 19} C. {3, 4, 6, 8, 9, 10, 12, 14, 15, 17, 19} D. {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} [Soal UN 2018] S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} A = {5, 7, 11, 13, 17, 19} B = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} $A \cap B = {5, 7, 11, 13}$ $A \cap B'$ adalah himpunan S yang bukan $A \cap B$. Jadi $A \cap B'$ = {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} β†’ E. 15. Wawancara dari 40 orang pembaca majalah diketahui 5 orang suka membaca majalah tentang politik dan olah raga, 9 orang yang tidak menyukai keduanya. Banyak pembaca yang menyukai majalah olah raga sama dengan dua kali banyak pembaca yang menyukai majalah politik. Banyak pembaca yang menyukai majalah politik adalah . . . . A. 8 orang B. 10 orang C. 12 orang D. 14 orang [Soal UN 2018] Misalkan banyak pembaca yang menyukai politik $= x$, maka banyak pembaca yang menyukai olah raga $= 2x$. Pembaca yang suka membaca majalah politik saja $= x - 5$. Pembaca yang suka membaca majalah olah raga saja $= 2x - 5$. Karena jumlah pembaca seluruhnya adalah 40 orang atau nS = 40, maka $x - 5 + 5 + 2x - 5 + 9 = 40$ $3x + 4 = 40$ $3x = 40 - 4$ $3x = 36$ $x = 12$ Banyak pembaca yang menyukai majalah politik $= x = 12$ β†’ C. 16. Jika A = {semua faktor dari 6}, maka banyak himpunan bagian dari A adalah . . . . A. 4 B. 8 C. 9 D. 16 [Soal UN] Faktor dari 6 1 x 6 2 x 3 Jadi, faktor dari 6 adalah {1, 2, 3, 6} A = {1, 2, 3, 6} nA = 4 Banyak himpunan bagian dari $A = 2^4 = 16$ β†’ D. 17. Diketahui A = {xx < 8, x $\in$ C} dan B = {x3 < x ≀ 9, x $\in$ B}, $A \cap B$ adalah . . . . A. {4, 5, 6, 7} B. {4, 5, 6, 7, 8} C. {3, 4, 5, 6, 7} D. {3, 4, 5, 6, 7, 8} [Soal UN] A = {0, 1, 2, 3, 4, 5, 6, 7} B = {4, 5, 6, 7, 8, 9} $A \cap B = \{4, 5, 6, 7\}$ β†’ A. 18. Dari 40 orang anggota karang taruna, 21 orang gemar tenis meja, 27 orang gemar bulutangkis, dan 15 orang gemar tenis meja dan bulu tangkis. Banyak anggota karang taruna yang tidak gemar tenis meja dan bulutangkis adalah . . . . A. 6 orang B. 7 orang C. 12 orang D. 15 orang [Soal UN] Perhatikan gambar ! Yang gemar tenis meja saja = 21 - 15 = 6 orang. Yang gemar bulutangkis saja = 27 - 15 = 12 orang. Yang gemar tenis meja dan bulutangkis = 15 orang. Yang tidak gemar tenis meja dan bulutangkis = n orang. Karena jumlah seluruh siswa = 40 orang atau nS = 40, maka $6 + 15 + 12 + n = 40$ $33 + n = 40$ $n = 40 - 33$ $n = 7\ orang$ β†’ B. 19. Dalam sebuah kelas tercatat 21 siswa gemar olah raga basket, 19 siswa gemar sepak bola, 8 siswa gemar basket dan sepak bola, serta 14 siswa tidak gemar olah raga. Banyak siswa dalam kelas tersebut adalah . . . . A. 46 siswa B. 54 siswa C. 62 siswa D. 78 siswa [Soal UN] Lihat gambar ! Yang gemar basket saja = 21 - 8 = 13 orang. Yang gemar sepak bola saja = 19 - 8 = 11 orang. Yang gemar basket dan sepak bola = 8 orang. Yang tidak gemar olah raga = 14 orang. $nS = 13 + 11 + 8 + 14$ $nS = 46\ orang$ β†’ A. 20. Dari 80 orang siswa yang disurvei tentang kegemaran menonton acara olah raga di televisi, diperoleh 48 orang gemar menonton volley, 42 orang gemar menonton basket, dan 10 orang tidak gemar acara tersebut. Banyak siswa yang hanya gemar menonton basket adalah . . . . A. 22 orang B. 28 orang C. 32 orang D. 36 orang [Soal UN] Lihat gambar ! nS = 80 Misalkan yang gemar menonton volley dan basket = n, maka yang gemar menonton volley saja = 48 - n. yang gemar menonton basket saja = 42 - n. yang tidak gemar menonton volley dan basket = 10. $nS = 48 - n + n + 42 - n + 10$ $80 = 100 - n$ $n = 100 - 80$ $n = 20$ yang gemar menonton basket saja $= 42 - 20 = 22\ orang$ β†’ A. Demikianlah Soal dan Pembahasan Operasi Himpunan. Selamat belajar !SHARE THIS POST

himpunan berikut yang merupakan dua himpunan yang ekuivalen adalah